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• read that memory with a kernel module at a later point
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GRUB internals, edited

1. GRUB starts
2. Some machine initialization
3. Terminal initialization
4. Read and dump XMM-registers to console
5. Load modules
6. Display boot menu
7. . . .
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1. Allocate some memory

2. Fill with a known pattern
3. Use some ASM to copy each register
4. Dump memory to console
5. Sleep 60 seconds

while PhD-student writes furiously
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Some gotchas

1. Allocate some memory
2. Fill with a known pattern
3. Explicitly set CPU in protected mode
4. Fix some other preconditions for SSE-instructions
5. Use some ASM to copy each register
6. Dump memory to console
7. Sleep 60 seconds while PhD-student writes furiously



Success! (Abort, retry, fail?)

XMM0: Some static data persisent over boots
XMM1–7: 0



Google

• XMM0 turns out to contain some CPUID-stuff
• Found in source files of the Coreboot project
• Likely explanation: BIOS uses XMM-registers
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• Runs in 32-bit protected mode: much easier than 16-bit real mode
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Not general

Port it ourselves or buy a supported board
Requirements:
1. Recent CPU
2. AMD or Intel
3. Relatively cheap
4. Socketed BIOS chip

ASROCK e350m1 w/ AMD e350 APU (CPU + Northbridge + stuff)
Some compatible BIOS chips



ASROCK e350m1



Method

Target registers first
1. Install linux
2. Clone coreboot
3. Get vanilla coreboot running on the board



Intermezzo: “compatible” chips aren’t

Clock speed “bug” in coreboot: BIOS chips incompatible
(I blame the chip vendor, not coreboot devs)
Last-minute trip to FOSDEM to exchange chips with coreboot devs



Method

Figure out how coreboot works
• Actually quite complex for something so limited in scope
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2. Load BIOS ROM from NVRAM
3. Jump to address 0xFFF0
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5. Do some CPU initialization
6. Initialize cache-as-ram for stack-based computing
7. Initialize Super-IO
8. Start outputting over serial port
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AMD64 boot (simplified less)

1. Power on
2. Load BIOS ROM from NVRAM
3. Jump to address 0xFFF0
4. Put CPU in protected mode
5. Do some CPU initialization
6. Initialize cache-as-ram for stack-based computing
7. Store XMM-registers in memory
8. Initialize Super-IO
9. Start outputting over serial port
10. Dump XMM-registers to serial port
11. . . .



Success! (Abort, retry, fail?)

XMM0–7: 0

But: manual analysis of coreboot disasm: xmm2-xmm7 are untouched
before patch code path.



The importance of documentation

“Table 14-1 shows the initial processor state following either RESET or
INIT. Except as indicated, processor resources generally are set to the
same value after either RESET or INIT.”

“SSE State XMM0–XMM15 = 0”

“Upon power-on reset, all 16 YMM/XMM registers are cleared to +0.0.
However, initialization by means of the #INIT external input signal does
not change the state of the YMM/XMM registers.”

“Following a RESET (but not an INIT), all instruction and data caches
are disabled, and their contents are invalidated (the MOESI state is set
to the invalid state).”



Dead end?

They implement what they say in the documentation (unfortunately)

Or do they?

Close examination of cache-as-ram initialization: explicit zeroing of
allocated stack
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Everything except some space used for function calls is 0

So can we actually read out uninitialized SRAM?

No.
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Security features?

No protection like the CPUs



Targets

Modern, common, consumer-grade Nvidia GPUs: Nvidia GTX 295
• Two GPU devices per card, with
• 30 multiprocessors per device, with
• 16384 32-bit registers, and
• 16KiB shared memory

High probability of SRAM used for registers and shared memory
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Shared memory

• Easier to access than the registers
• We were able to read 490KiB of shared memory in each GPU, and

repeated that on 17 devices
• Nice PUF properties
• No obstacles to building PUFs on these devices



Measurements / probabilities
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Difficulties

• Decompiling and analyzing flow of BIOS code
• Compilers using XMM-registers as scratch-registers
• Ensuring negative results are not caused by human error
• Complexity of bringing up an AMD64 machine



Code

Available at
https://www.polvanaubel.com/research/puf/x86-64/code/1

1 Actually, http://www.polvanaubel.com/research/puf/x86-64/code/ until I get a
chance to fix it.

https://www.polvanaubel.com/research/puf/x86-64/code/
http://www.polvanaubel.com/research/puf/x86-64/code/
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