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Abstract. Smart metering comes with risks to privacy. One concern is
the possibility of an attacker seeing the traffic that reports the energy use
of a household and deriving private information from that. Encryption
helps to mask the actual energy measurements, but is not sufficient to
cover all risks. One aspect which has yet gone unexplored – and where
encryption does not help – is traffic analysis, i.e. whether the length of
messages communicating energy measurements can leak privacy-sensitive
information to an observer. In this paper we examine whether using
encodings or compression for smart metering data could potentially leak
information about household energy use. Our analysis is based on the
real-world energy use data of ±80 Dutch households.
We find that traffic analysis could reveal information about the energy
use of individual households if compression is used. As a result, when
messages are sent daily, an attacker performing traffic analysis would
be able to determine when all the members of a household are away
or not using electricity for an entire day. We demonstrate this issue by
recognizing when households from our dataset were on holiday. If mes-
sages are sent more often, more granular living patterns could likely be
determined.
We propose a method of encoding the data that is nearly as effective as
compression at reducing message size, but does not leak the information
that compression leaks. By not requiring compression to achieve the best
possible data savings, the risk of traffic analysis is eliminated.
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1 Introduction

Privacy risks of smart metering have been analysed by looking at what in-
formation can be deduced from energy measurements on household granular-
ity [18,7,6,16]. This shows that smart metering measurements are privacy sensi-
tive.

The smart meter can send, among other things, a daily report of meter values
to the system operator. For an individual meter this report in its plainest form
can grow to several kilobytes. For several reasons, amongst which is simply the
monetary cost of data, system operators want to limit the bandwidth used by



this communication. The standards used for this communication are IEC 62056,
more commonly referred to as DLMS/COSEM. They allow for encoding and
compression to be applied to the meter readings, before encrypting them and
sending them to a central system [8,9,10].

Because these messages are encrypted, someone who can eavesdrop on the
communication does not have access to the actual meter readings. However, traf-
fic analysis may still be possible. In traffic analysis, we analyse the metadata of
network communication: who communicates, when, how much, to whom, with-
out regard to the contents of the communication. Encryption does not necessarily
reduce the risk of traffic analysis, especially if, as is the case for DLMS/COSEM,
the length of the messages is still known to the outside observer. The latest ver-
sion of DLMS/COSEM, not yet standardized by the IEC, defines a new encoding
method in addition to the existing encoding and compression options. This pa-
per explores how these options can influence the length of typical messages and
what information this may leak to an attacker.

In addition, we propose a method of encoding the data that is nearly as
effective as compression at reducing message size, but is not vulnerable to traffic
analysis by itself. This allows for data savings without introducing the risk of
traffic analysis.

Attacker model The question we are concerned with in this paper is whether
an attacker observing DLMS/COSEM traffic can learn privacy-sensitive informa-
tion solely from the length of the messages when the encoding and compression
options in DLMS/COSEM are used. We assume a passive attacker capable of
capturing all DLMS/COSEM traffic, but not injecting or manipulating messages.

In the Dutch smart metering infrastructure, measurements are currently
taken every 15 minutes, and sent in daily batches after midnight. We perform
our analysis on the messages communicating these daily batches to the grid op-
erator. The only source of information for the attacker is the length of these
messages. For this research, we do not consider other types of messages like re-
ports on power quality, because the link between them and potential privacy
impact is unclear.

In Section 2 we relate this paper to existing research into the privacy of smart
metering. In Section 3 we explain the relevant parts of the DLMS/COSEM
communication standards: the encodings and compression. We also introduce
our proposed alternative encoding that should prevent the problems we identify.
In Section 4 we explain the setup for our analysis, and in Section 5 we show
the results and discuss our findings. Finally, we suggest some avenues for future
work in Section 6, and we discuss our findings and give some recommendations
in Section 7.

2 Background

The encryption used in DLMS/COSEM does not hide the plaintext message
length from the attacker, it only adds a constant overhead to every encrypted



message. This means that an attacker may be able to derive privacy-sensitive
information by analysing the length of messages, partially circumventing the
protection that the encryption is supposed to provide.

We cover some related research on privacy aspects of smart metering and the
situation in the Netherlands in Section 2.1. In Section 2.2 we explain why the
length of encrypted messages may leak information about the data they contain.
In Section 2.3 we relate this to existing work that analyses correlations between
power use and compression, and explain our contribution.

2.1 Smart Metering Privacy

Privacy risks of smart metering have been analysed by looking at what informa-
tion can be deduced from energy measurements of an entire household. Molina-
Markham et al. show that with one measurement every second, very detailed
household living patterns can be deduced [18]. Greveler et al. show that from
similar data they can recognize household appliances like refrigerators, kettles,
and coffee machines. Worryingly, they can even distinguish different television
broadcasts being watched [7,6]. Liao, Stankovic, and Stankovic also show that
detecting refrigerators, boilers, kettles, toasters, etc. is possible, and by doing
so, can distinguish household activities [16].

All these focus on what can be learned from frequent unencrypted readings,
on the order of a measurement per second. Such frequent measurements are not
(currently) transmitted by Dutch smart meters – they send measurements taken
every 15 minutes [20]. However, that does not mean that there are no privacy
concerns for the data that is sent by the smart meters. The law introducing the
smart meter in the Netherlands was initially blocked by the First Chamber of
Parliament, because it did not adequately take consumer privacy into account.
An important issue was that it mandated 15-minute readings, and made the
smart meter itself mandatory. The law was only passed after being rewritten to
make the smart meter optional and the 15-minute readings opt-in [1]. The Distri-
bution System Operators (DSOs) themselves also consider some of the metering
data – in particular the measurements of energy use – privacy-sensitive [4].

2.2 Traffic Analysis: Length as a Side-Channel

The research mentioned in Section 2.1 [18,7,6,16] uses the actual energy use data
from the meter, which can be hidden by encryption. It may be possible, however,
to use message size as a side-channel to gain information about the encrypted
data, especially if encrypted messages directly leak the size of their plaintexts.
E.g. consider the case where we have two batches of an equal number of meter
readings: one containing a batch of 8-bit integers, and the other a batch of 32-bit
integers. Even if we encrypt these before sending them to a client, an attacker
can still trivially distinguish the two, just by seeing that the size of one message
is much larger than the other.

Even when the messages being encrypted are the same length, using com-
pression to save bandwidth may introduce possibilities for traffic analysis. E.g.



now consider the case where we have two batches of meter readings, where one
batch has measured “0” fifty times, and the other batch has fifty different mea-
surements. These measurements take an equal amount of space in the message.
If we only encrypt them and send them to a recipient, an attacker listening in
would not be able to tell, based on size alone, which one we have sent. But if we
compress them before encrypting, one message may compress down to say “50
times 0”, whereas the other needs the space for all its individual measurements.
The attacker looking at message length can deduce that one of these messages
has a lot of repeating values, whereas the other does not.

Already in 2002 the existence of such a compression-induced length side-
channel in encrypted messages was highlighted by Kelsey [12]. Langley hypoth-
esized in 2011 that compression before encryption could be used in an attack
to retrieve information being transmitted over the then-newly-developed SPDY
protocol, without actually breaking the underlying cryptographic protocols [13].
This was put in practice within a year by Rizzo and Duong in the CRIME at-
tack against HTTPS, SPDY, and TLS [19]. In 2013 Prado, Harris, and Gluck
followed this with the BREACH attack against the compression in HTTP [5].

It is important to note that these attacks do not “break” the cryptography
as such. Instead, the traffic analysis reveals the contents of parts of the commu-
nicated data, even though the messages remain encrypted.

2.3 Traffic Analysis to Learn Power Consumption

Encryption in the DLMS/COSEM standard primarily uses AES in Galois Counter
Mode, which adds a constant overhead to each encrypted message and does not
hide the plaintext message length from the attacker [8]. So from Section 2.2 we
can conclude that an attacker who sees the message length may be able to learn
information about the power consumption of a household by linking message
length to the power consumption.

In the case of smart metering, all the messages containing energy measure-
ments could in principle be the same size: they contain the same number of
measurements encoded the same way, as we explain in Section 3. However, if
compression is used, the messages can have different lengths.

Fehér et al. [2] show for a limited dataset that compression of smart metering
data can result in correlation between message length and power consumption.
They do not assess the practical implications of this correlation: the fact that one
exists does not necessarily mean it can be used by observers to infer interesting
information in real-life scenarios.

Our contribution is that we have analysed the effects that encoding and com-
pression have on the energy use data of real Dutch households. We investigate
whether an attacker performing traffic analysis could actually find a link between
message length and power consumption and derive privacy-sensitive information
from it. We confirm there exists such a correlation on a much larger dataset and
show concrete risks to privacy stemming from these correlations. Furthermore,



we propose an encoding that approaches the effectiveness of compression, but
does not exhibit the same correlation as compression.

3 Encoding and Compression Options in DLMS/COSEM

As mentioned in Section 1, system operators want to limit the bandwidth used
by the communication needed for smart metering. In this paper we deal with
two orthogonal concepts: encoding and compression. Both of these accomplish a
reduction in size. Encoding defines how individual data elements are represented
in a message. It can transform individual data elements in the message to achieve
a more efficient representation of the same information, e.g. by using smaller
data types or by converting absolute to relative measurements. Compression, on
the other hand, applies a compression algorithm to an entire message without
regard to the data contained within. Importantly, compression and encoding can
be applied together, first transforming the data into a smaller encoded version,
then applying compression to it. We therefore consistently distinguish between
encoding and compression.

In Section 3.1 we briefly introduce the DLMS/COSEM standards. In Sec-
tion 3.2 we introduce the different encoding mechanisms used in our analysis,
and in Section 3.3 we explain the compression mechanism used.

3.1 DLMS/COSEM

DLMS/COSEM (Device Language Message Specification / Companion Specifi-
cation for Energy Metering) is a set of IEC standards that define

1. a COSEM object model that gives structure to the available information in
the form of COSEM objects [10,9], and

2. a DLMS/COSEM communication stack that defines the messages and un-
derlying communication layers [8] used to communicate the objects.

As part of 2, elements are encoded using ASN.1, with a tag-length-value
structure: every element is tagged with its type and, if the type does not have a
predefined length, its length, followed by the encoded value of the element.

We can put all the 15-minute energy consumption measurements of an entire
day in a batched measurement object. The structure of such an object and a pos-
sible corresponding encoding as a message is given in Table 1. Each measurement
is combined with a status code and timestamp stating when the measurement
happened in a Struct, and all 96 Structs are wrapped in an Array. This ex-
ample uses a straightforward encoding not designed to reduce the size, which we
deduced from documentation and test cases available in DLMS/COSEM.

In this construction, every element is tagged with its type. The overhead of
this can be significant: an object containing only 8-bit integers encoded this way
would result in half of the message being spent on the type-tags of these integers.



Object Element Value Encoded value (hex) Length (bytes)

Header C4010000 4

Array (96 elements) 0160 2

Struct (3 elements) 0203 2

Date 2013-01-01 090C07DD0101 14
00:00:00 0500000000800000

Status 0 1100 2

Measurement 65530 060000FFFA 5

Struct (3) 0203 2

Date 2013-01-01 090C07DD0101 14
00:15:00 05000F0000800000

Status 0 1100 2

Measurement 65816 0600010118 5
...

...
...

...

Struct (3) 0203 2

Date 2013-01-01 090C07DD0101 14
18:30:00 05121E0000800000

Status 0 1100 2

Measurement 78286 06000131CE 5
...

...
...

...

Struct (3) 0203 2

Date 2013-01-01 090C07DD0101 14
23:45:00 05172D0000800000

Status 0 1100 2

Measurement 82362 06000141BA 5

Complete message C401000001600203090C07DD01 2214
01050000000080000011000600
00FFFA0203090C07DD01010500
0F000080000011000600010118
...
0203090C07DD010105121E0000
800000110006000131CE
...
0203090C07DD010105172D0000
800000110006000141BA

Table 1. Structure of a batched measurement object (first two columns, based on
DLMS/COSEM test cases), the encoding in the corresponding message (third column),
and length of each encoded field. Most measurements have been omitted for brevity.
The tags and lengths of the elements are included in the encoded values, and therefore
accounted for in their length. E.g. the encoding of the measurement itself as a 4-byte
integer needs 5 bytes due to the tag.



3.2 Possible Encodings in DLMS/COSEM

A new iteration of the DLMS/COSEM IEC standards is currently in develop-
ment, currently forecast to be published in June 2022.

In the DLMS/COSEM standards there are two encoding options with the
explicit purpose to save bandwidth:

1. NULL Coding (already standardized in [9,10,8])
2. Delta Coding (proposed as part of the next iteration of the standards)

In this section we explain both of these encodings and how they apply to our
problem.

NULL Coding In the current (2017) COSEM object model [9,10], a value may
be replaced by a short NULL-value if it can be unambiguously derived from the
previous instance of that object. For meter readings, this may happen when the
meter reading is the same as the previous one. For timestamps, this may happen
if an initial timestamp is transmitted and the periods between timestamps are
known. We refer to this mechanism as NULL Coding.

It is important to note that NULL Coding can only work because the Array

type is heterogeneous: looking at Table 1, not every Struct in the Array needs
to have an identical layout, so the integer types they contain can change if the
encoding allows for that. However, in DLMS/COSEM it is also possible to use
a so-called Compact-Array. This is a homogeneous array type that specifies the
type-tags of all its elements only once at the start, and requires every element
to have an identical structure. This prevents use of NULL Coding for everything
but timestamps in Compact-Array.

Delta Coding A second option, which we refer to as Delta Coding, is pro-
posed for the next (2022) version of the DLMS/COSEM IEC standards. Similar
to NULL Coding, Delta Coding seeks to save bandwidth by only transmitting
changes to the previous value. E.g. on a system where a meter reading is a 4-byte
integer, but power is consumed in amounts that fit in a single byte, Delta Coding
would save three bytes per message, or 75%.

Because DLMS/COSEM uses tag-length-value encoding, new integer types
(delta types) are introduced so that a distinction can be made between Delta
Coded values and absolute measurements. The proposed delta types are signed
and unsigned integers of 8, 16, and 32 bits.

The proposed standard does not (yet) prescribe an exact way in which these
delta types should be used. To still be able to perform a usable analysis, we have
considered what we believe are the most straightforward ways to use delta types
for our batched measurement messages, and have come up with several different
encodings which are all included in our analysis.

Since messages are considered independent, the first measurement in a mes-
sage will still need to be an absolute measurement regardless of which encoding
is used. All following measurements in that message can be encoded as delta
types. The ways in which this could be accomplished that we analysed are:



1. Minimum-Length Delta Coding: Since the encoded Array allows mixing
of types, the most obvious way is to simply use the smallest possible encoding
for each individual measurement. Since most Dutch household connections
provide 3 x 25A @ 230V connections, the theoretical maximum consumption
in 15 minutes is 4313Wh, a value that easily fits in a 16-bit delta type.
However, we expect that a lot of interval measurements in periods with
low energy use will fit in 8-bit deltas. This encoding will therefore result in
a variable message length saving between 2 and 3 bytes per measurement
when compared to the encoding shown in Table 1.

2. N-bit Delta Coding: Another option is to pick the smallest delta type in
which all measurements of an entire batch fit, and encode all measurements
except the first one using that type. This results in larger messages than op-
tion 1, but the message length would not depend (as much) on consumption.
We explore this option for 8-bit, 16-bit, and 32-bit delta types, and we refer
to these as N-bit Delta Coding.

Both options 1 and 2 are possible using the normal Array type, and we believe
they are both possible interpretations of the proposed addition of delta types.
However, choosing option 2 with a 16-bit delta type could result in more savings
than the minimum-length Delta Coding, if a homogeneous Compact-Array is
used. This does not appear to have been considered, so we propose this as an
additional option and include it in our analysis:

3. 16-bit Compact Delta Coding: We propose the structure laid out in
Table 2: a Compact-Array using 16-bit delta types to encode all except the
first value. For this to work, the first measurement must be encoded outside
of the array, because it must have a non-delta type to base the deltas on. The
overhead needed for this is dwarfed by the savings that a Compact-Array

provides over an Array. We refer to this option as 16-bit Compact Delta
Coding.
As we have already explained, the theoretical maximum consumption of a
Dutch household in 15 minutes is much smaller than 65535Wh, so we do
not really need to consider this case with a 32-bit delta type. Conversely,
it would not work with an 8-bit delta type because some measurements do
exceed 255Wh, which would re-introduce the need for a variable length.

3.3 Compression Used in DLMS/COSEM

Both in the current and proposed versions of DLMS/COSEM, the packet com-
pression mode of ITU-T V.44 [11] may be applied to messages. This mode uses
a data compression method in the Lempel-Ziv (LZ) family of compression algo-
rithms: Lempel-Ziv-Jeff-Heath (LZJH) compression [11, Annex B.1].

4 Experimental Setup

We want to determine whether applying the encoding and compression options
of DLMS/COSEM could enable traffic analysis, and whether that traffic anal-



Object Element Value Encoded value (hex) Length (bytes)

Header C4010000 4

Struct (2 elements) 0202 2

Struct (3 elements) 0203 2

Date 2013-01-01 090C07DD0101 14
00:00:00 0500000000800000

Status 0 1100 2

Measurement 65530 060000FFFA 5

Compact Array 13 1

Type tags

Struct (3) 0203 2

Date 09 1
Status 11 1
16-bit delta 20 1

Length (380 bytes) 8182017C 4

Entry

Date 2013-01-01 00 1
00:15:00

Status 0 00 1

Measurement 65816 011E 2
...

...
...

...

Entry

Date 2013-01-01 00 1
18:30:00

Status 0 00 1

Measurement 78286 0398 2
...

...
...

...

Entry

Date 2013-01-01 00 1
23:45:00

Status 0 00 1

Measurement 82362 213 2

Complete message C401000002020203090C07 419
DD01010500000000800000
1100060000FFFA13020309
11208182017C0000011E
...
00000398
...
00000213

Table 2. Structure of the batched measurement object from Table 1, encoded according
to our proposed 16-bit Compact Delta Coding. Omitting most type tags allows for
massive data savings.



ysis could result in leaking private information. Our experiment consists of the
following steps:

1. take publicly available real-world measurement data,
2. encode and compress them in the different possible combinations,
3. for each combination, attempt to find a relation between message length and

energy consumption, and
4. use that relation to try to derive private information.

In Section 4.1 we introduce the dataset, and in Section 4.2 we explain how
we generate messages from that dataset. In Section 5 we will cover steps 3 and 4.

4.1 The Zonnedael Dataset

For our analysis we use a publicly available dataset from the Dutch DSO Lian-
der [15]. This dataset contains the real energy use data of 80 Dutch households,
consensually collected for research purposes in 2013. Liander does not specify
whether these households are within one neighbourhood. For our purposes this
does not matter – all that matters is that these are real measurements from real
households. Some filenames refer to this as the “Zonnedael” dataset, a fictitious
name probably intended to better shield the data from deanonymization efforts.
We therefore also refer to this data as the Zonnedael data.

The dataset contains relative energy measurements on a 15-minute interval,
at Watt-hour resolution. We use this dataset mainly because it is readily avail-
able, contains real-world data, and has the measurement frequency we need for
our analysis.

4.2 Converting Metering Data to DLMS/COSEM Messages

We take the relative energy measurements from the Zonnedael dataset intro-
duced in 4.1. Using Python, we transform the dataset into absolute measure-
ments like they would be taken by a smart meter. We then generate batch mes-
sages covering 24-hour periods starting at midnight, similar to how the Dutch
infrastructure batches daily meter readings.

We construct messages:

1. without NULL Coding,
2. with NULL Coding applied only to dates, and
3. with NULL Coding applied to dates and Delta Coding applied to measure-

ments.

For option 3, we implement the variants of Delta Coding mentioned in Sec-
tion 3.2:

1. Minimum-Length Delta Coding,
2. fixed-length 32-bit, 16-bit, and 8-bit Delta Coding, and
3. our proposal of 16-bit Compact Delta Coding.



If a message cannot be encoded in a chosen encoding, that encoding is ig-
nored for that message. This is e.g. the case when using 8-bit Delta Coding
with measurements greater than 255Wh, or when particular measurements are
missing from the dataset.

We compress each of these messages individually. Unfortunately, LZJH is a
patented algorithm, with no open-source implementation available. Rather than
attempt to write our own implementation, we decided to analyse the effects of
compression using another member of the LZ family, Lempel-Ziv-Markov-chain
(LZMA). Both algorithms are based on the concept of Lempel-Ziv complex-
ity [14]. The basic operation of these algorithms is the same: repeated sequences
of data in a stream are replaced by references to the earlier occurrences. Fehér
et al. use the same rationale we do for their choice of using Lempel-Ziv-Welch
as an approximation of the behaviour of LZJH in [2]. We therefore assume that
our findings for LZMA will hold for LZJH as well, though it would be inter-
esting to see our results reproduced by a meter manufacturer with access to an
implementation of LZJH.

To actually perform the compression we use the routines available in Python’s
standard library [17].

We store the compressed and uncompressed version of each encoded message.
We can then explore the relation between the length of the resulting messages
and the energy measurements that they were generated from.

Note that we do not implement encryption. The AES-GCM encryption used
in DLMS/COSEM only adds a constant amount of overhead to all messages,
so the plaintext message length is known to the attacker. Since we do not look
at the contents of the messages anyway, encrypting the messages would only
add computational complexity without altering our findings. Even simulating
encryption by adding a constant factor to the lengths is superfluous: our analysis
would look the same regardless of whether we add a constant factor to all message
lengths, because we are not interested in the absolute lengths, but in how they
correlate with energy use.

5 Experimental Results

Our analysis using the real-world Zonnedael dataset introduced in Section 4.1
answers three questions:

1. Given the uncompressed messages (for all encodings), can we find correla-
tions between (daily) household energy use and message length?

2. Given the compressed messages (for all encodings), can we find correlations
between (daily) household energy use and message length?

3. If this correlation exists, can we use message length to impact user privacy?

As a reminder, we can use all encodings with or without compression, which
results in a total of 14 different options to analyse.

As we explain in Section 5.2, the answer to the first question is “no” — with
one exception — whereas the answer to the second question is “yes”. In Sec-
tion 5.3 answer the third question by showing how we can use that correlation



to impact user privacy, and we discuss the implications of our findings in Sec-
tion 5.4. First, however, we look at how effective the encodings and compression
actually are at saving data in Section 5.1.

5.1 Effectiveness of Encodings & Compression

The effectiveness of the encodings without compression applied is given in Ta-
ble 3. NULL and Delta Codings are by themselves already very effective at re-
ducing message length. NULL Coding shrinks the messages by a factor of 2.26,
simply by eliminating the need to transmit every timestamp as a full 13-byte
sequence. When Delta Coding is used, its effectiveness depends on the type of
Delta Coding and the actual meter value, but it ranges from 2.26 up to 5.28.

An overview of compression effectiveness when applied to these encodings is
given in Table 4. In addition to the tables, figures 1 and 2 give a visual indication
of how effective the encodings and compression are at saving data.

Encoding (Avg.) size Reduction ratio

None 2214 —
NULL Coding 979 2.26
Minimum-Length Delta Coding 697 3.18
32-bit Delta Coding 979 2.26
16-bit Delta Coding 789 2.81
8-bit Delta Coding 694 3.19
16-bit Compact Delta Coding 419 5.28

Table 3. Message size & size reduction ratio for uncompressed messages. Sizes for
the minimum-length Delta Coding are given as average. Size reduction ratio is given
relative to the unencoded message.

Encoding (compressed) Avg. size Reduction ratio

None 348 6.36
NULL Coding 208 10.64
Minimum-Length Delta Coding 196 11.30
32-bit Delta Coding 206 10.75
16-bit Delta Coding 181 12.23
8-bit Delta Coding 180 12.30
16-bit Compact Delta Coding 179 12.37

Table 4. Message size & size reduction ratio for compressed messages. Sizes are given as
average. Size reduction ratio is given relative to the uncompressed, unencoded message
from Table 3.

The most important conclusions to draw from these results are:

– Uncompressed, our proposal of 16-bit Compact Delta Coding is overwhelm-
ingly the best option, being much smaller than even the smallest messages
of Minimum-length Delta Coding.

– Delta encoding using only 32-bit Deltas is equivalent to normal encoding
with NULL Coding for dates, both achieving only a factor 2.26 improvement.



Thus, using only 32-bit deltas is not an improvement on already existing
options.

– 8-bit Delta Coding is 3.19 times better than no encoding. However, 8-bit
Delta Coding is not very useful because it turns out that on average only
18.5% of messages can be encoded using only 8-bit Deltas. The per-household
median for this is even lower, at 12%.

– Minimum-length Delta Coding is as effective as 8-bit Delta Coding for those
messages that can be expressed in only 8-bit Deltas, and then shows a slight
increase in space required as energy use increases. This is visible as a very
slight upward slope in the green plot on the left-hand side of Figure 1. How-
ever, this results in a correlation between energy used and message length,
which is a problem, as we explain in Section 5.2.

– Compression is very effective in all cases. Something not apparent from Ta-
ble 4, but which can be seen in Figure 1, is that compression on the Delta
Codings has a large spread in the lower ranges of energy use. This spread
narrows as the total use increases.

Fig. 1. Scatterplots of the relation between different encodings and data lengths of com-
pressed & uncompressed messages of a single household. 8-bit Delta Coding removed
because of its lack of usefulness and overlap with Minimum-length Delta Coding. Un-
compressed encodings on the left, compressed encodings on the right.

5.2 Correlations of Encodings & Compression with Energy Use

We see strong correlations induced by compression on all encodings. Therefore,
we first discuss the uncompressed versions of these encodings, and then discuss
the effects of compression separately.



Fig. 2. Scatterplots from Figure 1 com-
bined into one graph. Notice that uncom-
pressed 16-bit Compact Delta Coding is
very close to the compressed baseline.

Uncompressed messages We can
find no correlation between the size
of the uncompressed versions of mes-
sages encoded with most encodings
and the energy use of a household –
which follows from these being flat
lines in Figure 1.

All the Delta Codings except the
Minimum-Length Delta Coding are
encodings where message size does
not vary, so for them this is as ex-
pected.

Uncompressed versions of both
NULL Coding and the baseline mes-
sages do show some variation, but this
variation is not correlated with power
use. This effect can be seen in the left
graph of Figure 1, in the form of minor
outliers below the majority of message
lengths. These messages are all one of
three sizes. The reason for this is sim-

ple: at the start of its life, a smart meter will be able to transmit the meter values
in 8-bit integers, but this only holds until it passes 255 Watt-hours. Then, it will
be able to use 16-bit integers until it passes 65 kWh. From that point, until
it hits 4,294,967 kWh, the meter will be able to use 32-bit integers. This is
expected to be sufficient well beyond its lifetime. We discuss the (negligible)
privacy implications of this in Section 5.3.

However, we do find a strong correlation between power use and the length
of uncompressed Minimum-Length Delta-Coded messages. We did expect to see
some correlation here: 15-minute household consumption for the households in
our dataset seems to mostly fit in 8-bit deltas, but as consumption increases
more measurements in a message will need 16-bit deltas. This increases total
message size by a single byte each time it happens, inducing some correlation
between higher energy use and message length. However, we had not expected
this correlation to be as strong as it is, around or above 0.8 for most households.
Since the data-saving of Minimum-Length Delta Coding is inferior to our pro-
posal of 16-bit Compact Delta Coding — which does not show any correlation
— the safe option is to just use 16-bit Compact Delta Coding.

Compressed messages When compression is applied, results from our dataset
show a strong correlation between the length of the messages and energy use,
regardless of the encoding used. For the majority of customers, both the Pearson
and Spearman correlations for all compressed messages with the power use are
high, being at least 0.8 in most cases and 0.9 or higher in many. This is clearly
visible in the upward slopes on the right-hand side of Figure 1. The actual



correlation looks to be more logarithmic than linear in nature, but that is not a
problem for determining that the relation exists in the first place.

One possible explanation for this correlation is that the lowest energy use
of each single household happens when the residents are away from home for
extended periods of time, possibly entire days, and the load of a household in
this situation is likely to be repetitive, allowing for more compression. To clarify,
when the residents are away from home, only the “base load” of a household is
being measured. The base load consists mostly of duty-cycling equipment such
as freezers, or always-on equipment such as clocks. The base load will therefore
be both fairly low and repetitive. As mentioned in Section 4.2, the LZMA com-
pression algorithm we use is based on the concept of Lempel-Ziv complexity.
Lempel-Ziv complexity is a measurement of how “repetitive” a sequence is, and
the lower the Lempel-Ziv complexity of a sequence, the better it is compressed
by an LZ algorithm. Because the lowest energy use of a household is that where
only the base load is present, it makes sense that the best results of compression
correlate with the lowest energy use, with the correlation being caused by the
repetitive nature of the energy use. This explains why the correlation does not
hold as well across households: the actual consumption of the most repetitive
load may differ significantly from one household to the next.

This is only conjecture, however, which can be subject of future research.

5.3 Deriving Private Information from the Correlations

Using the insights from sections 5.1 and 5.2, we can now show the we can derive
privacy-sensitive information using the link between power consumption and
message length. We first discuss the issue where a new meter leaks that fact.
Then we show that we can determine when a household went on holiday.

New energy meter As mentioned in Section 5.2, uncompressed versions of
both NULL Coding and the baseline messages do show some variation, because
the meter starts counting from 0 and the initial messages can therefore use
smaller integers to encode the measurements. However, the yearly use of an av-
erage Dutch household is between 1500 and 5000kWh [21], depending on house-
hold composition and building type, so after only five days most households will
already have passed the point where 32-bit integers are being used. The length
of uncompressed messages therefore does leak that a new meter is installed, but
the privacy impact of this data is questionable and the leak is only present for
a few days at most. After this, the length is stable, and no further information
can be recovered from these two uncompressed encodings.

Determining holidays and other absences We now show that the com-
pressed versions of all encodings definitely leak privacy-sensitive data in a real-
world setting. The graphs in Figure 3 show the power use over the course of
the entire year for two different customers. They overlay the message lengths of



compressed versions of a few different encodings, including our proposed 16-bit
Compact Delta Coding.

We can assume that the lowest energy use indicates that the residents are
absent from the house, and we know that message length strongly correlates with
energy use. This does not allow us to make statements about these customers on
an hour-to-hour basis, but it does allow us to recognize longer periods of absence
because they break the somewhat irregular pattern of normal life.

As seen in Figure 3, customer 17 has clearly gone on a longer vacation twice:
once in June, and once in August. We also think there may have been a short
period of absence in October, and we believe they went away for Christmas.
On the other hand, customer 46 probably went on a short holiday in February,
a long summer holiday in June and July, and a third holiday in October, but
celebrated Christmas at home.

Fig. 3. The year in message lengths: household energy consumption of customer 17
(top) and 46 (bottom), plotted as actual power use (dashed blue) and the normalized
message lengths (solid lines). The different message length plots in each graph are all
the different encodings from which we can derive absences, all based on the same data
for each customer. All except one are compressed: for Minimum-length Delta Coding
the uncompressed version is also included. In all plots, it is very easy to recognize the
valleys that indicate prolonged absence. The same plots for the other uncompressed
encodings would just be horizontal lines across the year, providing no information, and
are therefore omitted. The actual power use is only shown for validation; the effect is
so striking it is clear we can derive the holiday periods from message length alone.



5.4 Discussion

In Section 5.3 we showed that we can derive private information from the corre-
lations we found. In this section we discuss the implications of these findings. We
speculate on other patterns that could be uncovered using this kind of analysis,
paying particular attention to the influence we expect frequency of transmission
and measurement to have on the capabilities of an attacker. We also reflect on
how big of a privacy risk our findings actually are.

Frequencies of transmissions and measurements For the results we pre-
sented in Section 5.3 we specifically looked for absences on several consecutive
days. However, this kind of analysis can also find patterns of single-day absences,
e.g. somebody spending every Saturday away from home. In addition, if meters
send smaller batches more frequently, we may be able to start distinguishing
between work days and other days. This hypothesis is hard to verify using the
Zonnedael dataset, because it does not include any information about what these
patterns actually are for the households. However, our reasoning is fairly simple
to explain. There are two key factors that play a role in this traffic analysis:

– Frequency of transmission
– Frequency of measurement

Changing the frequency of transmission has two effects – one that increases,
and one that decreases our abilities:

– More frequent transmission leads to shorter time periods that information
pertains to, which should make more detailed patterns emerge. E.g. if a batch
of measurements is sent every 6 hours, we may be able to recognize where
in the day someone wakes up, whether they went to work, etc.

– More frequent transmission leads to fewer measurements per batch, lowering
the correlation because compression has less of an impact. Initial results
show that as we approach just a few hours in a period, so on the order of
ten measurements in a message, correlation falls sharply.

The second point can then be counteracted by having more frequent measure-
ments. As we approach the order of a message per minute, with measurement
frequency of one second, we might in fact be able to approach the capabilities
of the research mentioned in Section 2.1, and provide a very detailed view of
household activity [18,7,6,16].

But there may also be a negative effect to increasing the measurement fre-
quency. Since the individual measurements are hidden, we have no way of de-
termining why a message has a certain length. Since the contents of the mea-
surements actually influence the way compression behaves, it’s likely there is a
limit to how many measurements can be in a single message before adding more
measurements make the analysis less, rather than more accurate. In addition,
the number of different values for individual measurements may also start play-
ing an important role. 15-minute measurements on a Watt-hour resolution can



be anything from 0 to a few thousand. When measured every second, however,
they can only be between 0 and 5 for an average Dutch domestic connection.

With the Zonnedael dataset, we cannot really explore the influence of chang-
ing the frequency of measurements, because the measurements are fixed on a
15-minute interval. However, in future work we may explore what patterns we
are able to deduce from more frequent batches.

Real-world situation Although not really a question for our research, we
should discuss the relationship between the real world and the kind of analysis
that we show in this paper. The traffic analysis assumes that the attacker can
eavesdrop on the communication of the meter. If the attacker needs to be phys-
ically close to the meter for this, then we should consider that the attacker can
also simply observe the house to derive the same information we have shown to
be derivable from energy use, and see that someone is away from home. But if
the attacker can monitor all the traffic for an entire neighbourhood, or even city,
or more, by e.g. examining GPRS traffic, the value of traffic analysis becomes
apparent. This is clearly something to take into account in the smart metering
infrastructure, even though there are a lot of other pressing privacy issues in this
domain.

We do note that we have been assured that the potential problems we iden-
tified are not present in the existing Dutch DLMS/COSEM infrastructure. We
have also made a lot of assumptions about the format of messages and the de-
sired encodings, based on our interpretation of what the standards allow, not
on what is actually used in practice. The industry should test whether these
assumptions hold in existing DLMS/COSEM implementations.

6 Future Work

We have performed our analysis on the daily batches of 15-minute interval mea-
surements. We are aware of DSOs that are considering using shorter intervals,
and reading them live. These scenarios should be explored in future work, as
discussed in Section 5.4. The examined encodings and compression might end
up influencing these message lengths in a totally different way. A real-world
dataset with this granularity would be useful to perform this research, but we
are currently unaware of the existence of such a dataset.

We have focused on the actual energy use by a household. The Dutch smart
metering infrastructure also communicates other information, such as power
quality. This information is treated as privacy-sensitive by Dutch DSOs [4], but
the actual relation between power quality measurements and privacy remains
largely unexplored. Both this relation and the subsequent impact of potential
traffic analysis could be an avenue of future work.

We have suggested an alternative encoding scheme in Section 3.2 and Ta-
ble 2 that already achieves very good data saving without being vulnerable to
the kind of analysis we have done. Whether this solution is truly suitable for



DLMS/COSEM is an open question, and should be answered by the DLMS
User Association.

If compression is still deemed necessary, a simple option is to determine
an acceptable minimum length for energy use messages, and to pad any com-
pressed messages to that length. This way they also become indistinguishable
to an observer, and a good amount of compression can likely still be achieved
without sacrificing privacy. The actual implementation and effectiveness of such
a padding scheme should be considered by the DLMS User Association, or can
be subject of future work.

The work presented by Fehér et al. proposes using the Generalized Dedu-
plication [22] compression scheme, which should lead to lower correlations [2,3].
However, they do not show a complete absence of correlation in GD-compressed
messages. So whether this scheme has the desired effect of making traffic analysis
useless is an open question. It would be interesting to see if we can reproduce
our results using the same dataset and this compression scheme.

7 Conclusions

Several options in the DLMS/COSEM specifications for communicating energy
use measured by smart meters can result in variable-length messages and thereby
may make traffic analysis possible. Since the AES-GCM encryption used in
DLMS/COSEM does not hide the length of messages from an attacker, it has
no effect on the possibility of traffic analysis. The options that result in variable
length messages are:

1. NULL Coding, where a meter reading may be replaced by a shorter NULL
value if it is identical to the previous reading;

2. Minimum-length Delta Coding, where a reading may be encoded in the
smallest type in which it fits; and

3. compression.

An implementation may use both such an encoding and compression at the same
time.

We have found that — in a real-world dataset, using our interpretation of
possible DLMS/COSEM encodings — compressing batched energy measurement
messages results in a strong correlation between message size and the daily en-
ergy use of households in all encodings that we have analysed. Using NULL Cod-
ing without compression does not show this correlation in our dataset, because
very few measurements are ever identical to the previous one. But this does not
rule out such a correlation existing in different datasets. Using Minimum-length
Delta Coding without compression results in the same correlation as compres-
sion.

An attacker performing traffic analysis could therefore determine when all
the members of a household are away. We have shown in Section 5.3 that we can
actually use these correlations to identify periods in which households went on
vacation, or whether they spent Christmas away from home. We conjecture that



if these measurements were sent more often in smaller batches, e.g. four times
per day, traffic analysis could reveal more detailed information and distinguish
when people wake up, go to work, etc.

Whether this is actually an (un)acceptable privacy risk is up for debate. Our
analysis assumed that meter readings are sent in a big batch, once per day, as is
current practice in the Netherlands. However, neither compression nor variable-
length encodings are currently in use in the Dutch metering infrastructure. So for
now, the risk seems to be purely hypothetical. Also, how easy it is to eavesdrop
on communication to then do traffic analysis will depend on the communication
medium used and was outside the scope of our research.

Looking towards the future, the risk can easily be eliminated by ensuring
there is no variation in the message length, sacrificing some data savings to
eliminate this risk to user privacy. There are many ways to achieve this. We pro-
pose a construction that uses 16-bit Compact Delta Coding without compression,
described in Section 3.2 and Table 2. This construction results in shorter un-
compressed messages than even Minimum-length Delta Coding, and approaches
the effectiveness of compression. However, because it does not result in messages
that vary in length, it avoids the risk of traffic analysis.
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