Non-Repudiation and End-to-End Security for Electric-Vehicle Charging

Innovative Smart Grid Technologies Europe 2019

Pol Van Aubel

September 30th, 2019

Authors

Pol Van Aubel pol.vanaubel@cs.ru.nl

Erik Poll

Joost Rijneveld

joost@joostrijneveld.nl

This work is supported by the European Regional Development Fund (ERDF), Rijksoverheid, and Province of Gelderland, as part of the project Charge & Go.

iCIS | Digital Security Radboud University

2/40

European Union

Pol Van Aubel

European Regional Development Fund

Overview

The EV-charging infrastructure

The need for security

End-to-end security

Conclusions

Source: openchargemap.io

3/40 Pol Van Aubel

EEE

Source: openchargemap.io

4/40 Pol Van Aubel

IEEE

Source: openchargemap.io

5/40 Pol Van Aubel

IEEE

Source: openchargemap.io

6/40 Pol Van Aubel

Source: openchargemap.io

7/40 Pol Van Aubel

Most important aspects

• Many roles, fulfilled by many different parties.

Most important aspects

- Many roles, fulfilled by many different parties.
- The only way for some of these to communicate is via other parties.

Overview

The EV-charging infrastructure

The need for security

End-to-end security

Conclusions

• Fraud

- Fraud
- Vandalism

- Fraud
- Vandalism
- Activism

- Fraud
- Vandalism
- Activism
 - "Chaos Computer Club hacks e-motor charging stations" https://www.ccc.de/en/updates/2017/e-motor

- Fraud
- Vandalism
- Activism
 - "Chaos Computer Club hacks e-motor charging stations" https://www.ccc.de/en/updates/2017/e-motor
- Grid destabilization

- Fraud
- Vandalism
- Activism
 - "Chaos Computer Club hacks e-motor charging stations" https://www.ccc.de/en/updates/2017/e-motor
- Grid destabilization
 - Horus Scenario: hacking PV-installations https://horusscenario.com/

- Fraud
- Vandalism
- Activism
 - "Chaos Computer Club hacks e-motor charging stations" https://www.ccc.de/en/updates/2017/e-motor
- Grid destabilization
 - Horus Scenario: hacking PV-installations https://horusscenario.com/
 - "Public Plug-in Electric Vehicles + Grid Data: Is a New Cyberattack Vector Viable?" https://arxiv.org/abs/1907.08283

• Privacy breaches

- Privacy breaches
 - Customer location is sensitive information!

- Privacy breaches
 - Customer location is sensitive information!
 - What other information should be secret?

- Privacy breaches
 - Customer location is sensitive information!
 - What other information should be secret?
 - GDPR compliance is not straightforward.

Current state of security

• Authentication / authorization with RFID cards

Current state of security

- Authentication / authorization with RFID cards
- Some TLS, lacking clear instructions

Envisioned state of security

• Strong authentication using challenge-response

Envisioned state of security

- Strong authentication using challenge-response
- TLS everywhere, standardized & specified well

Envisioned state of security

- Strong authentication using challenge-response
- TLS everywhere, standardized & specified well
- Better implementations and testing

Are we done then?

Are we done then?

15/40 Pol Van Aubel

We're not done

• TLS protects the network traffic between individual parties.

We're not done

- TLS protects the network traffic between individual parties.
- Provides confidentiality and authenticity for the data only while being communicated between these parties.

We have to trust that every party

• doesn't send what it shouldn't,

We have to trust that every party

- doesn't send what it shouldn't,
- doesn't change what it relays,

We have to trust that every party

- doesn't send what it shouldn't,
- doesn't change what it relays,
- doesn't peek at what it shouldn't see,

We have to trust that every party

- doesn't send what it shouldn't,
- doesn't change what it relays,
- doesn't peek at what it shouldn't see,
- doesn't later dispute sending something,

Trust

We have to trust that every party

- doesn't send what it shouldn't,
- doesn't change what it relays,
- doesn't peek at what it shouldn't see,
- doesn't later dispute sending something,

for whatever reason.

Overview

The EV-charging infrastructure

The need for security

End-to-end security

Conclusions

Main aspects:

• confidentiality.

Main aspects:

- confidentiality.
- authenticity.

Ε

Main aspects:

- confidentiality.
- authenticity.
- non-repudiation.

Ε

Main aspects:

- confidentiality.
- authenticity.
- non-repudiation.
- from end to end:

Main aspects:

- confidentiality.
- authenticity.
- non-repudiation.
- from end to end:
 - from the initial sending party on one side,

Main aspects:

- confidentiality.
- authenticity.
- non-repudiation.
- from end to end:
 - from the initial sending party on one side,

18/40

- to the eventual receiving party on the other side,

Pol Van Aubel

Main aspects:

- confidentiality.
- authenticity.
- non-repudiation.
- from end to end:
 - from the initial sending party on one side,

18/40

to the eventual receiving party on the other side,

Pol Van Aubel

- regardless of how many parties are in between.

This is not end-to-end!

19/40 Pol Van Aubel

And it doesn't provide non-repudiation!

• Long-term guarantee of authenticity

And it doesn't provide non-repudiation!

- Long-term guarantee of authenticity
- Proof that a message was produced by that party

And it doesn't provide non-repudiation!

- Long-term guarantee of authenticity
- Proof that a message was produced by that party
 - (very useful in disputes!)

An example message

EV ID Time CP Location Contract ID €/kWh 101 2019-09-30 14:50 51°49'30.6"N 5°52'06.5"E 12501932 0.21	Cha	Charge Session Start sent from EV to CPO								
101 12501032 0.21		EV ID	Time	CP Location	Contract ID	€/kWh				
		101			12501932	0.21				

An example message

EV ID Time CP Location Contract ID €/kWh 101 2019-09-30 51°49'30.6"N 12501932 0.21	Cha	Charge Session Start sent from EV to CPO								
101 10501039 0.91		EV ID	Time	CP Location	Contract ID	€/kWh				
14:50 5°52'06.5"E 12301332 0.21		101	2019-09-30 14:50	51°49'30.6"N 5°52'06.5"E	12501932	0.21				

Pol Van Aubel

21/40

An example message

Cha	Charge Session Start sent from EV to CPO								
	EV ID	Time	CP Location	Contract ID	€/kWh				
	101	2019-09-30 14:50	51°49'30.6"N 5°52'06.5"E	12501932	0.21				

 CP Location is dropped because the eMSP doesn't need it.

Ε

Adding authenticity & non-repudiation – naïvely

Adding authenticity & non-repudiation – naïvely

Pol Van Aubel

22/40

Adding authenticity & non-repudiation – naïvely

CP Location cannot be dropped because that invalidates the signature!

• Authenticity & non-repudiation (signatures)

- Authenticity & non-repudiation (signatures)
- End-to-end secrecy (encryption)

- Authenticity & non-repudiation (signatures)
- End-to-end secrecy (encryption)
- Data minimization (omission)

- Authenticity & non-repudiation (signatures)
- End-to-end secrecy (encryption)
- Data minimization (omission)
 - GDPR-compliance: data must be removed if no longer needed

- Authenticity & non-repudiation (signatures)
- End-to-end secrecy (encryption)
- Data minimization (omission)
 - GDPR-compliance: data must be removed if no longer needed
 - Hard to achieve with normal signatures

- Authenticity & non-repudiation (signatures)
- End-to-end secrecy (encryption)
- Data minimization (omission)
 - GDPR-compliance: data must be removed if no longer needed
 - Hard to achieve with normal signatures
- Limited overhead (data billed per byte)

- Authenticity & non-repudiation (signatures)
- End-to-end secrecy (encryption)
- Data minimization (omission)
 - GDPR-compliance: data must be removed if no longer needed

Pol Van Aubel

- Hard to achieve with normal signatures
- Limited overhead (data billed per byte)
- Offline operation (some parties may be offline when a message is sent)

How do we solve this? Two signatures?

How do we solve this? Two signatures?

Charge Session Start sent from EV to CPO									
EV ID	Time	CP Location	Contract ID	€/kWh					
101	2019-09-30 14:50	51°49'30.6"N 5°52'06.5"E	12501932	0.21					

Pol Van Aubel

24/40

How do we solve this? Two signatures?

Charge Session Start sent from EV to CPO									
EV II	D Time	CP Location	Contract ID	€/kWh					
101	2019-09-30 14:50	51°49'30.6"N 5°52'06.5"E	12501932	0.21					

24/40 Pol Van Aubel

F

This works, but...

• That's still a lot of overhead

This works, but...

- That's still a lot of overhead
- Doesn't solve data minimization

One signature using a hash tree

igneo	d Charge S	Session Start				
	EV ID	Time	CP Location	Contract ID	€/kWh	
	101	2019-09-30 14:50	51°49'30.6"N 5°52'06.5"E	12501932	0.21	

Pol Van Aubel

26/40

We take the hashes of individual data fields

27/40

Pol Van Aubel

Build the collection of hashes...

Pol Van Aubel

28/40

For each party that needs a signature

F

Then we hash those collections again...

Ε
Into a final couple of hashes

Ε

And sign those hashes

Pol Van Aubel

Overhead is minimized

Pol Van Aubel

CPO verification

Pol Van Aubel

CPO verification

Pol Van Aubel

Dropping & encrypting data now works

Pol Van Aubel

eMSP verification

eMSP verification

Ε

Cryptographic details

- We piggy-back on technologies that have to be present anyway:
 - Cryptographic algorithms from TLS
 - Public key infrastructure
 - JSON message formatting

Overview

- The EV-charging infrastructure
- The need for security
- End-to-end security

• EV-charging infrastructure is complex, with many actors.

- EV-charging infrastructure is complex, with many actors.
- Current security practices are not sufficient.

- EV-charging infrastructure is complex, with many actors.
- Current security practices are not sufficient.
- Employing TLS everywhere is a necessary improvement, but

- EV-charging infrastructure is complex, with many actors.
- Current security practices are not sufficient.
- Employing TLS everywhere is a necessary improvement, but
- TLS alone is not sufficient: We need true end-to-end security.

- EV-charging infrastructure is complex, with many actors.
- Current security practices are not sufficient.
- Employing TLS everywhere is a necessary improvement, but
- TLS alone is not sufficient: We need true end-to-end security.
- This can be achieved using hash trees and selective encryption.

Pol Van Aubel

- EV-charging infrastructure is complex, with many actors.
- Current security practices are not sufficient.
- Employing TLS everywhere is a necessary improvement, but
- TLS alone is not sufficient: We need true end-to-end security.
- This can be achieved using hash trees and selective encryption.
- Protocols will need to be changed to deal with this.

- EV-charging infrastructure is complex, with many actors.
- Current security practices are not sufficient.
- Employing TLS everywhere is a necessary improvement, but
- TLS alone is not sufficient: We need true end-to-end security.
- This can be achieved using hash trees and selective encryption.
- Protocols will need to be changed to deal with this.
- The industry needs to agree on which party should see what data.

Pol Van Aubel

- EV-charging infrastructure is complex, with many actors.
- Current security practices are not sufficient.
- Employing TLS everywhere is a necessary improvement, but
- TLS alone is not sufficient: We need true end-to-end security.
- This can be achieved using hash trees and selective encryption.
- Protocols will need to be changed to deal with this.
- The industry needs to agree on which party should see what data.

Pol Van Aubel

• This scheme works in other cases with similar requirements.

iCIS | Digital Security Radboud University

